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ABSTRACT 
Computational Thinking has sparked considerable interest in the 
computing community. It calls for the thinking habits of computer 
scientists to be more widely practiced by other scientists and 
engineers, and somewhat less technically, by all members of 
society. Computer scientists understand concepts like abstraction 
and algorithmic analysis, but the public does not. To promulgate 
computational thinking widely, we must define what we mean in a 
way that is understandable by the public. This paper’s intent is to 
provide a definition that computer scientists can use in presenting 
Computational Thinking to a wider audience.  It is not meant to 
define what computer science is, but rather to define in general 
terms the kinds of thinking skills and approaches used by 
computer scientists. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 
Computer science education, curricula, literacy. 

General Terms 
Algorithms, Performance, Design, Experimentation, Languages  

Keywords 
Computer science education, computational thinking, abstraction, 
automation, analysis. 

1. INTRODUCTION 
Since the term was introduced in a Viewpoints article in CACM 
in 2006 [1], computational thinking has been the subject of much 
discussion in the computing community. The concept,  

Computational thinking involves solving problems, 
designing systems, and understanding human behavior, by 
drawing on the concepts fundamental to computer science, 

got traction because the article advocated teaching computational 
thinking broadly. Scientists need such training because 
computation has become the “third pillar” of science [2]. More 
generally, college students need to acquire the thinking habits of 

computer scientists, because they are widely applicable in the 
information society in which those students will live and work, 
regardless of their eventual profession. And ultimately, K-12th 
graders should be introduced to computational thinking in order to 
set these fundamental thinking habits firmly in the minds of the 
next generation.  

The interest and excitement surrounding computational 
thinking and the potential of spreading it broadly across the 
population has motivated several recent projects: 

• The College Board is designing a new AP course that 
covers the fundamental concepts of computing and 
computational thinking.  

• The National Academies’ Computer Science and 
Telecommunications Board is holding a series of 
workshops on “Computational Thinking for Everyone” 
with a focus on identifying the fundamental concepts of 
computer science that can be taught to K-12 students. 

• On May 29, 2009, an event on The Hill sponsored by 
ACM, CRA, CSTA, IEEE, Microsoft, NCWIT, and SWE 
called for putting the “C” (computer science) into 
“STEM.” 

• The NSF, through the CISE CPATH program, emphasizes 
computational thinking in efforts to revitalize 
undergraduate computer science curricula. 

• Microsoft supports the Carnegie Mellon Center for 
Computational Thinking. 

• CSTA has produced and disseminated Computational 
Thinking Resource Set: A Problem-Solving Tool for Every 
Classroom. 

• The NSF CISE Directorate’s BPC Program has launched 
the CS/10,000 Project that aims to catalyze a revision of 
high school curriculum, with the new AP course as a 
centerpiece, and to prepare 10,000 teachers to teach the 
new courses in 10,000 high schools by 2015 

Additionally, panels and discussions on the topic have been 
plentiful at venues such as SIGCSE, ACM Educational Council, 
and the newly formed CRA-E. 

Beyond the computer science community computational 
thinking has attracted some interest from professionals in other 
fields (e.g., see CDI above) as well as educators. They are curious 
about it. But not being schooled in computer science, they 
struggle to understand exactly what it is. “Does it mean we should 
all think like a computer? Does it mean everyone should be a 
programmer?” (Answers: No.) And this confusion is 
understandable.  The rationale for wide adoption of computational 
thinking, which is so attractive to computer scientists, is not yet 
accessible to non-computer scientists. Computer scientists see the 
value of thinking abstractly, thinking at multiple levels of 
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abstraction, abstracting to manage complexity, abstracting to deal 
with scale, etc. We know the value of these capabilities. Others do 
not know what we mean.  

Because the goals of the computational thinking discussion – 
get it to other scientists, teach it to all college students, include it 
in K-12 curricula – involve populations outside of computer 
science, we cannot advance unless we can explain what it is all 
about. People in those communities must understand 
computational thinking enough to appreciate its importance. 

The purpose of this paper is to define computational thinking 
in a way that is accessible to the lay population. This is not a 
trivial translation of computer jargon into English. Rather, we 
must consider exactly what it is we mean by computational 
thinking, and be explicit, translating it into easily understood 
terms.  We must give everyday examples.  We must say why it is 
so useful. In this way we will make it accessible to the public at 
large, and hopefully move the program forward. We might even 
find that not every computer scientist means the same thing 
despite understanding all the words [3].  

 

2. ANTECEDENTS 
The computational thinking effort is not the first attempt to bring 
knowledge about computing to broader audiences. In the 1970s 
and 1980s non-major “computer appreciation” classes were 
common; they covered few concepts and had no programming. In 
the 1990s “computer literacy” classes focused on computer 
applications and contained even less about computational 
thinking.  

Motivated by goals similar to the computational thinking 
effort, Bill Wulf, then Assistant Director of CISE at NSF, 
commissioned an NRC study of “What everyone should know 
about IT.” The 1999 report, Fluency with Information Technology 
[4] called for teaching “skills, concepts and capabilities,” and 
gave ten sample topics for each. The report made the case that 
“some” programming knowledge is essential for the general 
public. “Skills” refers to day-to-day proficiency with applications 
and is basic literacy. However, the “concepts,” such as 
algorithmic thinking, and “capabilities,” such as logical reasoning, 
correlate closely with computational thinking. The Fluency 
recommendation, consistent with the study’s charge, emphasized 
specific topics rather than seeking the holistic approach that 
computational thinking does. Today fluency is taught in many 
colleges, but only occasionally in high school. To remedy the 
slow transfer to high school, NRC conducted another study, which 
issued the report ICT Fluency and High School Graduation 
Outcomes [5].  

3. PRELIMINARY TERMS 
One advantage the cognoscenti have is they understand the terms 
of the field deeply. It’s easy to understand one another. But the 
shared knowledge so thoroughly hides their thinking as to sound 
like jargon to everyone else. In order to make the concept of 
Computational Thinking more widely accessible, we will have to 
define our terms carefully. We start here, at the very basic level of 
data and processes.  

Computing is fundamentally concerned with two 
phenomena: data and processes. Both exist in the physical world 
we can touch, and in the logical world of concepts. Roughly 
speaking, data are static entities, while processes are dynamic 
entities that operate on data. 

Data is anything that can be observed or imagined in the 
physical or logical worlds. Everyday examples include numbers, 
images, songs, positions of the planets, subway maps, and medical 
records. Examples closer to computing:  programs are data, the 
relationship among pages at a Web site (as in the site map) is data, 
a record of the path of a packet through the Internet is data, and so 
forth. 

A process is a sequence of actions. The process of setting up 
the coffee maker in the morning starts with these individual 
actions: getting out the filter, placing it in the basket, filling the 
reservoir with water.  Other real-world examples of processes 
include balancing a checkbook, monitoring a patient’s 
temperature, searching the Web, guiding a rocket towards Jupiter, 
and natural processes like metabolism and protein folding.   A 
process’s sequence of actions can be finite or infinite, and a 
comprehensive definition would be broad enough to relax 
“sequence.” 

Data and processes are everywhere. 

4. COMPUTATIONAL THINKING 
DEFINED 
At this point, it is perhaps clearer to jump to our central definition, 
leaving key terms – abstraction, automation, and analysis – that it 
uses to be defined in the remainder of the section. 

     Computational Thinking is the use of abstraction, along 
     with automation and analysis, in problem solving, 

4.1 Abstraction 
Abstraction is the process of generalizing from specific instances. 
As used in problem solving, it is intended to capture essential 
common characteristics, while discarding unessential 
characteristics. It is at the core of typical computing activities 
such as developing algorithms, identifying structural properties, 
patterns, and relationships in data, parameterization, creating new 
computational systems, and discovering emergent behaviors in 
complex systems. Abstraction is the defining characteristic of 
computational thinking. 

There are many kinds of abstraction.  Let’s consider two: a 
data abstraction and a process abstraction. The DC metro map 
below is an example of a data abstraction.  It represents 
information in a way that is useful for its intended purpose: to 
help people find their way from one part of DC to the other using 
the metro.  It is a topological abstraction of the physical layout of 
the metro lines.  The map gives exactly the relevant detail needed 
for someone to find his or her way from the Dupont Circle in 
downtown DC to Reagan National Airport in Virginia. It shows 
relevant details, like the places where we can transfer between the 
different lines (the transfer points shown as large, double circles) 
while it eliminates irrelevant detail like distances between each 
pair of stops or the street locations of each metro station. 

The typical abstraction of a process that takes some input 
data, follows a sequence of actions, and produces some desired 
output data is called an algorithm. A recipe for cooking chocolate 
chip cookies is an algorithm.  The raw ingredients, such as flour, 
sugar, and eggs, are the algorithm’s inputs.  The recipe’s steps are 
the algorithm’s sequence of actions; and the baked cookies are the 
algorithm’s outputs.  An algorithm focuses our attention on 
relevant detail and abstracts away from irrelevant detail. For 
example, a typical chocolate chip cookie recipe says exactly how 



much flour to use, and the order in which to add each ingredient 
and how.   But, it eliminates irrelevant details such as what kind 
of oven or utensils to use.  

 
Some abstractions exist only in the mind, separate from any 

embodiment or explicit representation. For example, 
computational thinkers use a design methodology called divide 
and conquer. The details are unimportant, but the idea is to solve 
a problem by dividing it into n subproblems, for concreteness, say 
n = 2.  We solve both smaller problems and combine the two 
results. The two smaller problems are each solved the same way – 
dividing them into two, solving those two smaller problems and 
combining them, and so forth until we reach a base problem we 
know how to solve. It is an abstraction of how to solve problems; 
it is not actually a solution to anything. It is an abstraction to 
guide computational thinkers in finding good solutions.  

Other abstractions – most in fact – can be expressed in 
symbolic form and thereby be made tangible.  We can carry a 
copy of the DC metro map in our pocket; we can print a recipe on 
the back of the bag of chocolate chips.  

For computing purposes, we often use a binary 
representation (based on the symbols 0 and 1) to express data in a 
tangible form. But, data abstractions usually impose structure and 
describe relationships that go considerably beyond the 
representation of the content. For example, a spreadsheet – the 
arrangement and organization of the cells, their properties and 
dependences – contains information beyond the bits that represent 
the values in each position. The spreadsheet makes this additional 
information about the data tangible. Likewise, for computing 
purposes, processes are expressed in symbolic forms, notably as 
programs written in a programming language, but also as 
algorithms in pseudo-code, flowcharts, state diagrams, database 
queries, spreadsheet formulas, HTML files, and on and on. These 
are the tangible and familiar forms of computation. 

When we specify abstractions of data or processes in 
symbolic form using a formal, written language, the results are 
expressions. Motivated by a recent formulation of Denning and 
Freeman [6], we say that computational thinking concerns 
expressions that describe data or processes. Expressions can be 
manipulated with a computer. Expressions of algorithms are not 
just descriptive, but also generative; that is, they are capable of 
producing actions when interpreted by a suitable agent.  

4.2 Automation 
The agent that interprets an expression of an abstraction can be a 
person, a computer, a group of people or computers, and 
combinations thereof.  

When a human interprets an expression, such as the 
instructions for setting up the coffee maker, the instructions can 
rely on his or her intelligence. An instruction like “fill the 
reservoir with water” is simple compared, for example, to 
describing to a robot what the reservoir is, what water is and how 
it is handled, and how to fill it from the sink. Thus, we can use 
higher-level instructions when instructing people. This is 
convenient. Unfortunately, humans are also unreliable agents. 
Perhaps the most compelling example of this frailty is the number 
of lives saved in hospitals simply by verifying (using a checklist) 
that the written-out steps in a medical procedure are actually 
performed by the medical personnel [7]. 

Computers on the other hand tirelessly and stolidly follow 
precise instructions. They are superbly engineered to check 
themselves continuously, producing a near perfect agent, a 
laborsaving device ready to perform any process for us. For many 
problems, they are lightning fast, compared to the processing 
power of humans.  Their memory capacity is practically infinite 
and stored data persist forever, dwarfing what a human can 
remember in his or her lifetime. 

Automation inspires computational thinkers to invent and 
create new abstractions. Because the tireless agent executes the 
abstractions perfectly, using a resource (computer) that is already 
available and largely underutilized, new “work” comes for free. 
Further, because executing abstractions is not significantly 
constrained by limitations of the physical world, the main limit to 
inventiveness is human imagination. 

4.3 Analysis 
The computer as a “perfect agent,”  however, extracts a huge price 
from computational thinkers. First, it is “not very bright,” 
meaning that the instructions of the process must be extremely 
primitive, making the automation task challenging. And second, it 
is unforgiving, meaning the instructions must be exactly right. 
Thus the automation of abstractions is both challenging and 
exacting. The expressions produced by computational thinkers are 
not amorphous collections of instructions or other representations.  
Quite the opposite. They are carefully organized and structured to 
achieve the correct result when interpreted by an agent. Achieving 
this desired behavior is challenging. Accordingly, a central 
activity for computational thinkers is analyzing abstractions: What 
does this algorithm compute?  Is it correct for all possible input 
data? How much of the available computational resources does it  
require?  Does this data abstraction capture the relevant properties 
of interest? What algebraic properties does this data abstraction 
enjoy?  

Computational thinkers must do certain types of analysis to 
ensure that their abstractions – expressed as algorithms, programs, 
databases, and systems of all sorts – achieve the goals of efficient 
and correct behavior. These analyses include: algorithmic 
analysis, performance analysis, specification, verification, 
debugging, testing, and experimentation.   

More generally, however, computational thinkers spend 
considerable time designing new and better abstractions.  The 
creation of any new abstraction requires some design decisions, 
and in this sense it shares with engineering the need to be 
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inventive in the presence of constraints.  As in engineering 
computational thinkers need to have good judgment: to be able to 
make design tradeoffs and to evaluate an abstraction by 
qualitative measures such as simplicity and elegance,  Unlike 
engineers who are constrained by limits of the physical world, 
computational thinkers can design abstractions that exist in 
synthetic worlds, and thus their imagination is the only limit on 
their design creativity.    

4.4 The 3As: Abstraction, Automation, 
Analysis 
Abstraction is a near-universal tool. It is full-time logical 
reasoning. Abstractions can be interpreted (executed) by any 
agent with sufficient capability.  Expressing an abstraction so that 
a computer can interpret it is both challenging and exacting—it 
takes human creativity and ingenuity. And, to get abstractions and 
their expressions right and to evaluate their goodness requires 
analysis, reasoning, and judgment. Computational thinking is a 
rich intellectual activity with wide applicability.   

Though computational thinking is unique, it shares features 
with other forms of thinking. With respect to abstraction, it has 
closest ties to mathematics, and with respect to analysis it has 
closest ties to engineering. Automation, which is exploration and 
discovery with computers, gives us the courage to solve problems 
at a scale and complexity beyond anything humans can do alone. 
Computational thinking may be new collection of high-quality 
intellectual skills, but it extends a rigorous and respected 
foundation. 

5. BENEFITS 
5.1 Levels of Abstraction 
By definition, abstraction involves two levels: the more general 
level  to which we abstract and the more specific level from which 
we abstract.  The true power of abstraction comes from layering, 
one level more abstract than the level below. 

Let’s consider the task of evaluating a search query.  The 
figure below gives Brin and Page’s original query processing 
algorithm [8] for a Google search. These eight instructions are 
“very large” in that each assumes a high capability by the 
interpreting agent, in this case a human reader.  They are 
sufficient to explain (to those who have read the paper in which 
they appear) to a human how a computer implements the search. 
So they describe to computational thinkers how the software 
works. It is one level of abstraction – probably the highest level of 
abstraction – of the query processing software. 

 
No computer has hardware for the first action “Parse the 

query” or any of the other seven actions, so they must be 
simplified. Parsing the text that we type into Google’s query 

window requires processing by a sequence of algorithms that 
might be expressed by the instructions 
 Group letters into words 
 Identify quoted phrases 
 Find minus words (NOT) 
 Group OR words 
 … 

This description of how “Parse the query” is implemented is 
another level of abstraction. It is a lower level of abstraction 
because the operations are simpler, presuming less capability by 
the executing agent.  

We can consider how each of these actions is implemented 
with simpler instructions, creating other still lower levels of 
abstraction. Eventually we will get to the program code for these 
algorithms written in a programming language such as C or 
JavaScript. It forms another level of abstraction – the 
programming level – with components such as 
if (query[i] == QUOT || query[i] == APOST) 

     phrase.length = count; 

that express the computation simply enough that the actions can 
be translated into a form a computer can actually understand. This 
translation – performed by computers – goes first to a level of 
abstraction known as the assembly code level, and then to a lower 
level, called machine code, which is actually written out in binary. 
Assembly code is probably the lowest level for most computer 
scientists, though there are several lower levels used by computer 
architects, electrical engineers, and chip designers.  

A key aspect of this discussion is that there is only one 
computation, but it is expressed in terms of multiple levels of 
abstraction. At each level instructions get simpler than those 
above it, and their total number increases. To continue the query-
processing example, the eight instructions of the highest level of 
abstraction expand to 100,000s of thousands at the lower 
programming level, and possibly a million at the assembly 
language level.  

The explanation makes clear why many levels of abstraction 
exist. But how do computational thinkers benefit from them?  
First, abstraction gives us the ability to focus our attention on one 
level at a time; ignoring all details of all the levels below. It 
allows computational thinkers to build large systems, one level of 
abstraction at a time, without having to think about all of the 
details of  one monolithic system all at once.  Second, the 
relationship between each pair of levels is just as important as the 
two levels themselves.  When we compile a C program into 
assembly code, the compiler is transforming expressions at a high 
level of abstraction into expressions at a lower level; the compiler 
had better be correct so that the assembly code will have the same 
intended behavior as that expressed by the C program.  The 
compiler formally defines a relationship between the two layers of 
abstraction.  The compiler itself is an abstraction (i.e., a process 
that translates expressions from one language to another), and 
moreover, because it is itself a formal expression of a relationship 
between two levels of abstraction we can automatically build lots 
and lots of systems: given any C program, we can produce the 
corresponding assembly code. 

 When applying the idea of layers of abstraction throughout a 
computation or more generally in building large systems, 



computational thinkers end up moving up and down among the 
levels smoothly. It promotes a nimble mind, and is the sort of 
thinking students can be taught. 

5.2 Building Large, Complex Systems 
Computing has brought us many very complex systems: the 
Internet, the Web, and social networks, to name a few. These are 
complex because they permit a rich set of interactions. In fact, 
nearly all software of any sophistication is so complex as to be 
beyond complete understanding, even with all of the current tools 
of computer science. 

Armed with the ability to automate and analyze 
abstractions—and layer abstractions—computational thinkers can 
build large, complex systems. 

Two essential tools used by computational thinkers to 
manage the complexity of large systems are 
decomposition/composition and stepwise refinement. Both are 
applicable broadly. Decomposition is simply the idea of breaking 
a task into parts and working on them separately; if they are still 
too complex to deal with, decompose each, and so forth. (Divide-
and-conquer of Section 4.1 is an example of decomposition.)  
Composition  is the opposite: starting with pieces and composing 
them to build larger and larger systems. 

Stepwise refinement, which is closely related, solves a 
problem using (possibly imagined) operations that are sufficient to 
produce the result, but probably not within the agent’s “ability,” 
i.e. they are not actual operations the agent can perform. With the 
problem solved in terms of those operations, return to implement 
them using stepwise refinement. Repeating until all operations are 
lare legitimate for the agent, produces a working result.  More 
generally, refinement, by going from the general to more specific, 
is the opposite of abstraction, which goes from the specific to the 
more general. 

Such techniques allow computational thinkers to design and 
build systems of astonishing complexity, but they can be used in 
nearly any problem-solving situation. 

6. EDUCATIONAL CONSIDERATIONS 
Computational thinking is a rich and valuable intellectual 
capability with value to students. Improved ability to abstract. 
Abstraction is widely used outside of computing, and 
computational thinking will make students more sophicated in its 
use, better, for example, at separating the relevant from the 
irrelevant aspects of a problem.  

Ability to automate an abstraction. Expressing a process well 
enough that a computer can execute it is challenging, requiring 
students to be logical, thorough, clear, and precise in their 
thinking. 

Ability to assess the goodness of an abstraction. Analyzing an 
abstraction and assessing how well it meets its requirements – 
How efficiently does it encode data? How long does the process 
execute? etc. – is a valuable skill that easily translates to other 
settings.    

Greater facility with scale and complexity. Computational 
thinking  skills allow us to deal with huge, real-world systems, 
can be taught and applied in a classroom setting. 

Sustained logical reasoning. Case analysis, debugging, exception 
handling, invariants, type checking, correctness by construction, 
and many other aspects of computational thinking provide myriad 
of opportunities to enhance a student’s reasoning abilities. 

Improved facility with parallelism. Computers work together to 
solve problems; so do people, but in both cases synchronization, 
coordination, and communication are fraught with complications; 
computational thinking clarifies the opportunities and challenges 
of parallelism guiding students to avoid difficulties. 
Improved persistence in problem solving. It is possible to engage 
students in very compelling applications of computational 
thinking that may increase their interest and enthusiasm for 
problem solving in general. 

Learning design skills.  Design of abstractions requires the ability 
to satisfy logical constraints and make engineering tradeoffs, but 
also requires good taste and understanding of the end user. 

Opportunities to create. Computational thinking applies to the 
synthetic world of information where a student can realize 
creative ideas through automation. Dreams and ideals can be 
fulfilled. 

7. Future Work 
Computational thinking must be brought in to the K-20 
curriculum, both in classes devoted to computing and in classes 
for other disciplines. It is important for our science students to 
understand and be facile with the use of computation in their 
fields, it is important for our journalism, art, and music students as 
well. Computational thinking is a basic 21st century skill. As 
perhaps one of the many next steps in achieving this goal, we 
would like to write a primer full of real-world example 
abstractions suitable for teaching computational thinking to 
children. 
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