

Computational Thinking: A Definition
Janice E. Cuny

National Science Foundation
4201 Wilson Boulevard

Arlington, VA 22230
1 703-292-8489
jcuny@nsf.gov

Lawrence Snyder
University of Washington

Department of CSE
Box 352350, Seattle WA 98195

 1 206 543 9265
snyder@cs.washington.edu

Jeannette M. Wing
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

1 412 268 3068
wing@cs.cmu.edu

ABSTRACT
Computational Thinking has sparked considerable interest in the
computing community. It calls for the thinking habits of computer
scientists to be more widely practiced by other scientists and
engineers, and somewhat less technically, by all members of
society. Computer scientists understand concepts like abstraction
and algorithmic analysis, but the public does not. To promulgate
computational thinking widely, we must define what we mean in a
way that is understandable by the public. This paper’s intent is to
provide a definition that computer scientists can use in presenting
Computational Thinking to a wider audience. It is not meant to
define what computer science is, but rather to define in general
terms the kinds of thinking skills and approaches used by
computer scientists.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education, curricula, literacy.

General Terms
Algorithms, Performance, Design, Experimentation, Languages

Keywords
Computer science education, computational thinking, abstraction,
automation, analysis.

1. INTRODUCTION
Since the term was introduced in a Viewpoints article in CACM
in 2006 [1], computational thinking has been the subject of much
discussion in the computing community. The concept,

Computational thinking involves solving problems,
designing systems, and understanding human behavior, by
drawing on the concepts fundamental to computer science,

got traction because the article advocated teaching computational
thinking broadly. Scientists need such training because
computation has become the “third pillar” of science [2]. More
generally, college students need to acquire the thinking habits of

computer scientists, because they are widely applicable in the
information society in which those students will live and work,
regardless of their eventual profession. And ultimately, K-12th
graders should be introduced to computational thinking in order to
set these fundamental thinking habits firmly in the minds of the
next generation.

The interest and excitement surrounding computational
thinking and the potential of spreading it broadly across the
population has motivated several recent projects:

• The College Board is designing a new AP course that
covers the fundamental concepts of computing and
computational thinking.

• The National Academies’ Computer Science and
Telecommunications Board is holding a series of
workshops on “Computational Thinking for Everyone”
with a focus on identifying the fundamental concepts of
computer science that can be taught to K-12 students.

• On May 29, 2009, an event on The Hill sponsored by
ACM, CRA, CSTA, IEEE, Microsoft, NCWIT, and SWE
called for putting the “C” (computer science) into
“STEM.”

• The NSF, through the CISE CPATH program, emphasizes
computational thinking in efforts to revitalize
undergraduate computer science curricula.

• Microsoft supports the Carnegie Mellon Center for
Computational Thinking.

• CSTA has produced and disseminated Computational
Thinking Resource Set: A Problem-Solving Tool for Every
Classroom.

• The NSF CISE Directorate’s BPC Program has launched
the CS/10,000 Project that aims to catalyze a revision of
high school curriculum, with the new AP course as a
centerpiece, and to prepare 10,000 teachers to teach the
new courses in 10,000 high schools by 2015

Additionally, panels and discussions on the topic have been
plentiful at venues such as SIGCSE, ACM Educational Council,
and the newly formed CRA-E.

Beyond the computer science community computational
thinking has attracted some interest from professionals in other
fields (e.g., see CDI above) as well as educators. They are curious
about it. But not being schooled in computer science, they
struggle to understand exactly what it is. “Does it mean we should
all think like a computer? Does it mean everyone should be a
programmer?” (Answers: No.) And this confusion is
understandable. The rationale for wide adoption of computational
thinking, which is so attractive to computer scientists, is not yet
accessible to non-computer scientists. Computer scientists see the
value of thinking abstractly, thinking at multiple levels of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE 2010
Copyright 2010 ACM 1-58113-000-0/00/0004…$5.00.

abstraction, abstracting to manage complexity, abstracting to deal
with scale, etc. We know the value of these capabilities. Others do
not know what we mean.

Because the goals of the computational thinking discussion –
get it to other scientists, teach it to all college students, include it
in K-12 curricula – involve populations outside of computer
science, we cannot advance unless we can explain what it is all
about. People in those communities must understand
computational thinking enough to appreciate its importance.

The purpose of this paper is to define computational thinking
in a way that is accessible to the lay population. This is not a
trivial translation of computer jargon into English. Rather, we
must consider exactly what it is we mean by computational
thinking, and be explicit, translating it into easily understood
terms. We must give everyday examples. We must say why it is
so useful. In this way we will make it accessible to the public at
large, and hopefully move the program forward. We might even
find that not every computer scientist means the same thing
despite understanding all the words [3].

2. ANTECEDENTS
The computational thinking effort is not the first attempt to bring
knowledge about computing to broader audiences. In the 1970s
and 1980s non-major “computer appreciation” classes were
common; they covered few concepts and had no programming. In
the 1990s “computer literacy” classes focused on computer
applications and contained even less about computational
thinking.

Motivated by goals similar to the computational thinking
effort, Bill Wulf, then Assistant Director of CISE at NSF,
commissioned an NRC study of “What everyone should know
about IT.” The 1999 report, Fluency with Information Technology
[4] called for teaching “skills, concepts and capabilities,” and
gave ten sample topics for each. The report made the case that
“some” programming knowledge is essential for the general
public. “Skills” refers to day-to-day proficiency with applications
and is basic literacy. However, the “concepts,” such as
algorithmic thinking, and “capabilities,” such as logical reasoning,
correlate closely with computational thinking. The Fluency
recommendation, consistent with the study’s charge, emphasized
specific topics rather than seeking the holistic approach that
computational thinking does. Today fluency is taught in many
colleges, but only occasionally in high school. To remedy the
slow transfer to high school, NRC conducted another study, which
issued the report ICT Fluency and High School Graduation
Outcomes [5].

3. PRELIMINARY TERMS
One advantage the cognoscenti have is they understand the terms
of the field deeply. It’s easy to understand one another. But the
shared knowledge so thoroughly hides their thinking as to sound
like jargon to everyone else. In order to make the concept of
Computational Thinking more widely accessible, we will have to
define our terms carefully. We start here, at the very basic level of
data and processes.

Computing is fundamentally concerned with two
phenomena: data and processes. Both exist in the physical world
we can touch, and in the logical world of concepts. Roughly
speaking, data are static entities, while processes are dynamic
entities that operate on data.

Data is anything that can be observed or imagined in the
physical or logical worlds. Everyday examples include numbers,
images, songs, positions of the planets, subway maps, and medical
records. Examples closer to computing: programs are data, the
relationship among pages at a Web site (as in the site map) is data,
a record of the path of a packet through the Internet is data, and so
forth.

A process is a sequence of actions. The process of setting up
the coffee maker in the morning starts with these individual
actions: getting out the filter, placing it in the basket, filling the
reservoir with water. Other real-world examples of processes
include balancing a checkbook, monitoring a patient’s
temperature, searching the Web, guiding a rocket towards Jupiter,
and natural processes like metabolism and protein folding. A
process’s sequence of actions can be finite or infinite, and a
comprehensive definition would be broad enough to relax
“sequence.”

Data and processes are everywhere.

4. COMPUTATIONAL THINKING
DEFINED
At this point, it is perhaps clearer to jump to our central definition,
leaving key terms – abstraction, automation, and analysis – that it
uses to be defined in the remainder of the section.

 Computational Thinking is the use of abstraction, along
 with automation and analysis, in problem solving,

4.1 Abstraction
Abstraction is the process of generalizing from specific instances.
As used in problem solving, it is intended to capture essential
common characteristics, while discarding unessential
characteristics. It is at the core of typical computing activities
such as developing algorithms, identifying structural properties,
patterns, and relationships in data, parameterization, creating new
computational systems, and discovering emergent behaviors in
complex systems. Abstraction is the defining characteristic of
computational thinking.

There are many kinds of abstraction. Let’s consider two: a
data abstraction and a process abstraction. The DC metro map
below is an example of a data abstraction. It represents
information in a way that is useful for its intended purpose: to
help people find their way from one part of DC to the other using
the metro. It is a topological abstraction of the physical layout of
the metro lines. The map gives exactly the relevant detail needed
for someone to find his or her way from the Dupont Circle in
downtown DC to Reagan National Airport in Virginia. It shows
relevant details, like the places where we can transfer between the
different lines (the transfer points shown as large, double circles)
while it eliminates irrelevant detail like distances between each
pair of stops or the street locations of each metro station.

The typical abstraction of a process that takes some input
data, follows a sequence of actions, and produces some desired
output data is called an algorithm. A recipe for cooking chocolate
chip cookies is an algorithm. The raw ingredients, such as flour,
sugar, and eggs, are the algorithm’s inputs. The recipe’s steps are
the algorithm’s sequence of actions; and the baked cookies are the
algorithm’s outputs. An algorithm focuses our attention on
relevant detail and abstracts away from irrelevant detail. For
example, a typical chocolate chip cookie recipe says exactly how

much flour to use, and the order in which to add each ingredient
and how. But, it eliminates irrelevant details such as what kind
of oven or utensils to use.

Some abstractions exist only in the mind, separate from any

embodiment or explicit representation. For example,
computational thinkers use a design methodology called divide
and conquer. The details are unimportant, but the idea is to solve
a problem by dividing it into n subproblems, for concreteness, say
n = 2. We solve both smaller problems and combine the two
results. The two smaller problems are each solved the same way –
dividing them into two, solving those two smaller problems and
combining them, and so forth until we reach a base problem we
know how to solve. It is an abstraction of how to solve problems;
it is not actually a solution to anything. It is an abstraction to
guide computational thinkers in finding good solutions.

Other abstractions – most in fact – can be expressed in
symbolic form and thereby be made tangible. We can carry a
copy of the DC metro map in our pocket; we can print a recipe on
the back of the bag of chocolate chips.

For computing purposes, we often use a binary
representation (based on the symbols 0 and 1) to express data in a
tangible form. But, data abstractions usually impose structure and
describe relationships that go considerably beyond the
representation of the content. For example, a spreadsheet – the
arrangement and organization of the cells, their properties and
dependences – contains information beyond the bits that represent
the values in each position. The spreadsheet makes this additional
information about the data tangible. Likewise, for computing
purposes, processes are expressed in symbolic forms, notably as
programs written in a programming language, but also as
algorithms in pseudo-code, flowcharts, state diagrams, database
queries, spreadsheet formulas, HTML files, and on and on. These
are the tangible and familiar forms of computation.

When we specify abstractions of data or processes in
symbolic form using a formal, written language, the results are
expressions. Motivated by a recent formulation of Denning and
Freeman [6], we say that computational thinking concerns
expressions that describe data or processes. Expressions can be
manipulated with a computer. Expressions of algorithms are not
just descriptive, but also generative; that is, they are capable of
producing actions when interpreted by a suitable agent.

4.2 Automation
The agent that interprets an expression of an abstraction can be a
person, a computer, a group of people or computers, and
combinations thereof.

When a human interprets an expression, such as the
instructions for setting up the coffee maker, the instructions can
rely on his or her intelligence. An instruction like “fill the
reservoir with water” is simple compared, for example, to
describing to a robot what the reservoir is, what water is and how
it is handled, and how to fill it from the sink. Thus, we can use
higher-level instructions when instructing people. This is
convenient. Unfortunately, humans are also unreliable agents.
Perhaps the most compelling example of this frailty is the number
of lives saved in hospitals simply by verifying (using a checklist)
that the written-out steps in a medical procedure are actually
performed by the medical personnel [7].

Computers on the other hand tirelessly and stolidly follow
precise instructions. They are superbly engineered to check
themselves continuously, producing a near perfect agent, a
laborsaving device ready to perform any process for us. For many
problems, they are lightning fast, compared to the processing
power of humans. Their memory capacity is practically infinite
and stored data persist forever, dwarfing what a human can
remember in his or her lifetime.

Automation inspires computational thinkers to invent and
create new abstractions. Because the tireless agent executes the
abstractions perfectly, using a resource (computer) that is already
available and largely underutilized, new “work” comes for free.
Further, because executing abstractions is not significantly
constrained by limitations of the physical world, the main limit to
inventiveness is human imagination.

4.3 Analysis
The computer as a “perfect agent,” however, extracts a huge price
from computational thinkers. First, it is “not very bright,”
meaning that the instructions of the process must be extremely
primitive, making the automation task challenging. And second, it
is unforgiving, meaning the instructions must be exactly right.
Thus the automation of abstractions is both challenging and
exacting. The expressions produced by computational thinkers are
not amorphous collections of instructions or other representations.
Quite the opposite. They are carefully organized and structured to
achieve the correct result when interpreted by an agent. Achieving
this desired behavior is challenging. Accordingly, a central
activity for computational thinkers is analyzing abstractions: What
does this algorithm compute? Is it correct for all possible input
data? How much of the available computational resources does it
require? Does this data abstraction capture the relevant properties
of interest? What algebraic properties does this data abstraction
enjoy?

Computational thinkers must do certain types of analysis to
ensure that their abstractions – expressed as algorithms, programs,
databases, and systems of all sorts – achieve the goals of efficient
and correct behavior. These analyses include: algorithmic
analysis, performance analysis, specification, verification,
debugging, testing, and experimentation.

More generally, however, computational thinkers spend
considerable time designing new and better abstractions. The
creation of any new abstraction requires some design decisions,
and in this sense it shares with engineering the need to be

8

inventive in the presence of constraints. As in engineering
computational thinkers need to have good judgment: to be able to
make design tradeoffs and to evaluate an abstraction by
qualitative measures such as simplicity and elegance, Unlike
engineers who are constrained by limits of the physical world,
computational thinkers can design abstractions that exist in
synthetic worlds, and thus their imagination is the only limit on
their design creativity.

4.4 The 3As: Abstraction, Automation,
Analysis
Abstraction is a near-universal tool. It is full-time logical
reasoning. Abstractions can be interpreted (executed) by any
agent with sufficient capability. Expressing an abstraction so that
a computer can interpret it is both challenging and exacting—it
takes human creativity and ingenuity. And, to get abstractions and
their expressions right and to evaluate their goodness requires
analysis, reasoning, and judgment. Computational thinking is a
rich intellectual activity with wide applicability.

Though computational thinking is unique, it shares features
with other forms of thinking. With respect to abstraction, it has
closest ties to mathematics, and with respect to analysis it has
closest ties to engineering. Automation, which is exploration and
discovery with computers, gives us the courage to solve problems
at a scale and complexity beyond anything humans can do alone.
Computational thinking may be new collection of high-quality
intellectual skills, but it extends a rigorous and respected
foundation.

5. BENEFITS
5.1 Levels of Abstraction
By definition, abstraction involves two levels: the more general
level to which we abstract and the more specific level from which
we abstract. The true power of abstraction comes from layering,
one level more abstract than the level below.

Let’s consider the task of evaluating a search query. The
figure below gives Brin and Page’s original query processing
algorithm [8] for a Google search. These eight instructions are
“very large” in that each assumes a high capability by the
interpreting agent, in this case a human reader. They are
sufficient to explain (to those who have read the paper in which
they appear) to a human how a computer implements the search.
So they describe to computational thinkers how the software
works. It is one level of abstraction – probably the highest level of
abstraction – of the query processing software.

No computer has hardware for the first action “Parse the

query” or any of the other seven actions, so they must be
simplified. Parsing the text that we type into Google’s query

window requires processing by a sequence of algorithms that
might be expressed by the instructions
 Group letters into words
 Identify quoted phrases
 Find minus words (NOT)
 Group OR words
 …

This description of how “Parse the query” is implemented is
another level of abstraction. It is a lower level of abstraction
because the operations are simpler, presuming less capability by
the executing agent.

We can consider how each of these actions is implemented
with simpler instructions, creating other still lower levels of
abstraction. Eventually we will get to the program code for these
algorithms written in a programming language such as C or
JavaScript. It forms another level of abstraction – the
programming level – with components such as
if (query[i] == QUOT || query[i] == APOST)

 phrase.length = count;

that express the computation simply enough that the actions can
be translated into a form a computer can actually understand. This
translation – performed by computers – goes first to a level of
abstraction known as the assembly code level, and then to a lower
level, called machine code, which is actually written out in binary.
Assembly code is probably the lowest level for most computer
scientists, though there are several lower levels used by computer
architects, electrical engineers, and chip designers.

A key aspect of this discussion is that there is only one
computation, but it is expressed in terms of multiple levels of
abstraction. At each level instructions get simpler than those
above it, and their total number increases. To continue the query-
processing example, the eight instructions of the highest level of
abstraction expand to 100,000s of thousands at the lower
programming level, and possibly a million at the assembly
language level.

The explanation makes clear why many levels of abstraction
exist. But how do computational thinkers benefit from them?
First, abstraction gives us the ability to focus our attention on one
level at a time; ignoring all details of all the levels below. It
allows computational thinkers to build large systems, one level of
abstraction at a time, without having to think about all of the
details of one monolithic system all at once. Second, the
relationship between each pair of levels is just as important as the
two levels themselves. When we compile a C program into
assembly code, the compiler is transforming expressions at a high
level of abstraction into expressions at a lower level; the compiler
had better be correct so that the assembly code will have the same
intended behavior as that expressed by the C program. The
compiler formally defines a relationship between the two layers of
abstraction. The compiler itself is an abstraction (i.e., a process
that translates expressions from one language to another), and
moreover, because it is itself a formal expression of a relationship
between two levels of abstraction we can automatically build lots
and lots of systems: given any C program, we can produce the
corresponding assembly code.

 When applying the idea of layers of abstraction throughout a
computation or more generally in building large systems,

computational thinkers end up moving up and down among the
levels smoothly. It promotes a nimble mind, and is the sort of
thinking students can be taught.

5.2 Building Large, Complex Systems
Computing has brought us many very complex systems: the
Internet, the Web, and social networks, to name a few. These are
complex because they permit a rich set of interactions. In fact,
nearly all software of any sophistication is so complex as to be
beyond complete understanding, even with all of the current tools
of computer science.

Armed with the ability to automate and analyze
abstractions—and layer abstractions—computational thinkers can
build large, complex systems.

Two essential tools used by computational thinkers to
manage the complexity of large systems are
decomposition/composition and stepwise refinement. Both are
applicable broadly. Decomposition is simply the idea of breaking
a task into parts and working on them separately; if they are still
too complex to deal with, decompose each, and so forth. (Divide-
and-conquer of Section 4.1 is an example of decomposition.)
Composition is the opposite: starting with pieces and composing
them to build larger and larger systems.

Stepwise refinement, which is closely related, solves a
problem using (possibly imagined) operations that are sufficient to
produce the result, but probably not within the agent’s “ability,”
i.e. they are not actual operations the agent can perform. With the
problem solved in terms of those operations, return to implement
them using stepwise refinement. Repeating until all operations are
lare legitimate for the agent, produces a working result. More
generally, refinement, by going from the general to more specific,
is the opposite of abstraction, which goes from the specific to the
more general.

Such techniques allow computational thinkers to design and
build systems of astonishing complexity, but they can be used in
nearly any problem-solving situation.

6. EDUCATIONAL CONSIDERATIONS
Computational thinking is a rich and valuable intellectual
capability with value to students. Improved ability to abstract.
Abstraction is widely used outside of computing, and
computational thinking will make students more sophicated in its
use, better, for example, at separating the relevant from the
irrelevant aspects of a problem.

Ability to automate an abstraction. Expressing a process well
enough that a computer can execute it is challenging, requiring
students to be logical, thorough, clear, and precise in their
thinking.

Ability to assess the goodness of an abstraction. Analyzing an
abstraction and assessing how well it meets its requirements –
How efficiently does it encode data? How long does the process
execute? etc. – is a valuable skill that easily translates to other
settings.

Greater facility with scale and complexity. Computational
thinking skills allow us to deal with huge, real-world systems,
can be taught and applied in a classroom setting.

Sustained logical reasoning. Case analysis, debugging, exception
handling, invariants, type checking, correctness by construction,
and many other aspects of computational thinking provide myriad
of opportunities to enhance a student’s reasoning abilities.

Improved facility with parallelism. Computers work together to
solve problems; so do people, but in both cases synchronization,
coordination, and communication are fraught with complications;
computational thinking clarifies the opportunities and challenges
of parallelism guiding students to avoid difficulties.
Improved persistence in problem solving. It is possible to engage
students in very compelling applications of computational
thinking that may increase their interest and enthusiasm for
problem solving in general.

Learning design skills. Design of abstractions requires the ability
to satisfy logical constraints and make engineering tradeoffs, but
also requires good taste and understanding of the end user.

Opportunities to create. Computational thinking applies to the
synthetic world of information where a student can realize
creative ideas through automation. Dreams and ideals can be
fulfilled.

7. Future Work
Computational thinking must be brought in to the K-20
curriculum, both in classes devoted to computing and in classes
for other disciplines. It is important for our science students to
understand and be facile with the use of computation in their
fields, it is important for our journalism, art, and music students as
well. Computational thinking is a basic 21st century skill. As
perhaps one of the many next steps in achieving this goal, we
would like to write a primer full of real-world example
abstractions suitable for teaching computational thinking to
children.

8. REFERENCES
[1] Jeannette M. Wing, “Computational Thinking,” CACM

49.03:33-35, 2006.

[2] PITAC Report: “Computational Science: Ensuring
America’s Competitiveness,” National Coordination Office
for Information Technology Research and Development,
2005.

[3] British Computing Society Debate on Computational
Thinking, 2007, www.bcs.org/server.php?show
=ConWebDoc.11837

[4] National Research Council, Fluency with Information
Technology: Skills, Concepts and Capabilities, NAP 1999.

[5] National Research Council, Information and Communication
Technology Fluency and High School Graduation Outcomes,
NAP 2006.

[6] Peter J. Denning and Peter A. Freeman. Computing’s
Paradigms. CACM, to appear.

[7] Atul Gawande, “The Checklist,” New Yorker, Dec. 10, 2007.

[8] [SB94] Sergei Brin and Lawrence Page, “The Anatomy of a
Large-Scale Hypertextual Web Search Engine,”
infolab.stanford.edu/~backrub/google.html

